CS 320: Concepts of Programming Languages

Wayne Snyder
Computer Science Department
Boston University

Lecture 04: Basic Haskell Continued

o Polymorphic Types

o Type Inference with Polymorphism

o Standard Types: Bools, Integers

o Function definitions in more detail:
if-then-else, guards, where

Reading: Hutton Chapter 3, 4.1 —4.4



Polymorphic Types Reading: Hutton Ch. 3.7

Recall: Many functions (and data types) do not need to know everything
about the types of the arguments and results.

Many data types and most list-processing functions are of this kind:

data List a
data Pair a b
data Triple a

Nil | Cons a (List a)
= P a b
bc=Taboc

append :: List a -> List a -> List a

reverse :: List a —-> List a Check: What is the type of
head (Cons x ) = X P 2

tail (Cons x XS) = XS head ?

tail ?



Polymorphic Types Reading: Hutton Ch. 3.7

Recall: Many functions (and data types) do not need to know everything
about the types of the arguments and results.

Many data types and most list-processing functions are of this kind:

data List a Nil | Cons a (List a)
data Pair a b = P a b
data Triple a b ¢ =T a b c

append :: List a -> List a -> List a

reverse :: List a —-> List a Check: What is the type of
head (Cons x ) = X P :: a -—> Db -> Pair a b
tail (Cons x xs) = xs head :: List a -> a

tail :: List a -> List a



Polymorphic Types Reading: Hutton Ch. 3.7

Polymorphic type inference, based on unifying type expressions, determines the
types of all expressions by looking at all the places where types must be the same:

pred :: Nat -> Nat

—— return the first n elements of a list

| |

take Z2ero XS =|xs

take n Nil =|Nil

take n (Cons x xs)| =|]Cons x (take (pred n) %S)
|

.

J

\

o Same variable in a rule must be same type.
o Arguments each each position and result types must be the same.
o Inputs to function and type of arguments must be same.

Type of function must be:
take :: Nat -> List a -> List a



Polymorphic Types Reading: Hutton Ch. 3.7

Polymorphic type inference, based on unifying type expressions, determines the
types of all expressions by looking at all the places where types must be the same:

pred :: Nat -> Nat

—— return the first n elements of a list

take :: Nat -> List a -> List a

take Zero XS = XS

take n Nil = Nil

take n (Cons x xs) = Cons x (take (pred n) xs)

But ALL expressions must have appropriate types, using rule:

f :: A -> B e :: A

(f e) :: B



Polymorphic Types Reading: Hutton Ch. 3.7

Polymorphic type inference determines the most general type that a function can have. This
involves accounting for all the type constraints implied when you examine two type
expressions that must apply to a single context (say an argument to a function):

data Bool = False | True

data Nat = Zero | Succ Nat

data Triple a b ¢ =T a b c --ex: (Zero, Zero, True)
T 12 a -> b -> ¢ -> Triple a b ¢

Example 1:

Let s = (T Zero x V) --X,Y,2,W can have any types
Let £t = (T z False w)

If s and t have to have the same type, what would that type be?

(Triple Nat Bool a)

and furthermore, we must have z :: Nat, x :: Bool buty,w canbe anything
as long as they are the same type a !



Polymorphic Types

data Bool = False | True

data Nat = Zero | Succ Nat

data Triple a b ¢ =T a b c --ex: (A,C,B)

Example 2:

Let s = (T True x False) —-- %x,Y,2z,w have unknown types
Let £t = (T z False x )

If s and t have to have the same type, what would that type be?

For s we have (Triple Bool a Bool)
For t we have (Triple b Bool c )

For the types to be the same we would have to havea = b = ¢ = Bool:
(Triple Bool Bool Bool)

This process is like “two-sided matching” and is called Unification:

Reading: Hutton Ch. 3.7

(Triple Bool b Bool))™ (Triple Bool Bool Bool) *— (Triple a Bool c)



Polymorphic Types Reading: Hutton Ch. 3.7

data Bool = False | True

data Nat = Zero | Succ Nat

data Pair a b = P a b --ex: (A, B)

data Triple a b ¢ =T a b c --ex: (A,C,B)
Example 3:

Let s = (T True x X ) —- x, y can have any types
Let £t = (T y False Zero )

If s and t have to have the same type, what would the type of T be?

Answer: No type exists, as x would have to simultaneously be Bool and Nat, so it is
contradictory and is a type error! The type expressions

(Triple Bool a a) and (Triple b Bool Nat)

can NO'T be unified!



Polymorphic Types

Reading: Hutton Ch. 3.7

data Bool = False | True
Example: data Nat = Zero | Succ Nat
data Pair a b = P a b
f (Pair a b) -> (Triple a b b) data Triple a b ¢ =T a b c
f (P x v) = (T x )
Y Yy unify these two
k (Pair Bool a) -> (Pair a Bool) / \
k (P x V) = (P y x ) f :: A ->B e :: A’
(f e) B’
test x = (f (k x))
k (Pair Bool a) -> (Palir a Bool) X C
(k x) (Pair a Bool)

C

(Pair Bool a)



Polymorphic Types Reading: Hutton Ch. 3.7

data Bool = False | True

Unification determines what type a function must have: data Nat = Zero | Succ Nat

data Pair a b =P a b
f :: (Pair a b) -> (Triple a b b) data Triple a b c =T ab c
t (P xy) = (T Xy Y)

unify these two
k :: (Pair Bool a) -> (Pair a Bool) / \
k (P X y) = (P Yy X ) f :: A ->B e :: A’
(f e) :: B

test x = (f (k x))

k :: (Pair Bool a) -> (Pair a Bool) X :1: C
(k x) :: (Pair a Bool)
f :: (Pair a’ b’) -> (Triple a’ b’ b’)
(f (k x)) = 27 Note: names
Unify:  (Pair a’ b’ ) can include
(Pair a Bool) prime marks:

c = (Pair Bool a) a = a’ b’ = Bool a a" a'’



Polymorphic Types Reading: Hutton Ch. 3.7

data Bool = False | True

Unification determines what type a function must have: data Nat = Zero | Succ Nat
data Pair a b =P a b
f :: (Pair a b) -> (Triple a b b) data Triple a b c =T ab c
t (P xy) = (T Xy Y)
unify these two
k :: (Pair Bool a) -> (Pair a Bool) ‘//// \\\\\\
k (P X V) = (P Yy X ) f :: A ->B e :: A’
(f e) :: B

test x = (f (k x))

k :: (Pair Bool a) -> (Pair a Bool) X :1: C

(k x) :: (Palr a Bool)
f :: (Pair a’ b’) -> (Triple a’ b’ b’)

(f (k x)) =:: (Triple a’ Bool Bool)
c = (Pair Bool a) a = a’ b’ = BRool

test :: ?°



Polymorphic Types

Unification determines what type a function must have:

Reading: Hutton Ch. 3.7

data Bool
data Nat
data Pair a b

False | True
Zero | Succ Nat
Pab

f (Pair a b) —-> (Trlple a b b) data Triple abc=Tabc
f (P X y) = (T X )
Y Y unify these two
k (Pair Bool a) -> (Pair a Bool) ‘//// \\\\\\
k (P X V) = (P Yy X ) f :: A ->B e :: A’
(f e) :: B’
test x = (f (k x))
k (Pair Bool a) -> (Palir a Bool) X :1: C
(k x) (Pair a Bool)
f (Pair a’ b’) -> (Triple a’ b’ b’)
(f (k x)) (Triple a’ Bool Bool)
c = (Pair Bool a) a = a’ b’ = BRool
Another example at end of
test P Bool a’ -> T a’ Bool Bool

the slides.....



Adding Numbers to Bare Bones Haskell:
Built-in Numeric Types

Integer — arbitrary-precision integers

Double — 64-bit float-point

Operators +, -, *, == are the same in Haskell as in Python, Java, &&C except:

exponentiation: x”*3 (only for integer exponents)
x**3.1415  (only for floating-point exponents)

unary minus: (-9) (must use parentheses)

not equals: /=

Integer division: (div 10 7) => 1

Floating-point division ( 3.4 / 4.9) => 0.693877551020408

modulus: (mod 10 7) => 3

We'll explore types in detail next week..... for now we will only use Integers.



Built-in Numeric Types: Infix vs Prefix Functions

We have been using prefix notation up to this point and two of the new functions we have
for Integers are given in this form:

Integer division: (div 10 7) => 1
modulus: (mod 10 7) => 3

But most (binary) arithmetic operators are infix: Remember:
=> means “evaluates to”

(4 * 3) => 12
(2 = 3) => (-1)
There are also postfix (unary) functions in mathematics:

5! => 120

as well as mixfix for functions of more than 2 arguments:

(3 <4 22 :5) =>2 The term operator generally refers
to a function which is used with
infix notation: + * * etc.
We'll just call them functions.

(1f 6 < 4 then 2 else 5) => 5



Built-in Numeric Types: Infix vs Prefix Functions

Haskell is completely flexible about prefix and infix notation for binary (two argument)

functions:

To use a function defined in prefix form as infix surround it by backquotes:
(div 10 7) => 1 (10 "div: 7) =>1
(mod 10 7) => 3 (10 "mod™ 7) => 3

To use a function defined in infix form as prefix surround it by parentheses:
(10 + 7) => 17 ((+) 10 7) => 17
(10 ~ 3) => 1000 ((™) 10 3) => 1000

To define an infix function it must consist of special symbols (no letters) and the type

declaration must use prefix (with parentheses):
(') :: List a -> Integer -> a —— select the nth element
(!!) (Cons x ) 0 =x

('Y (Cons x xs) n = xs !'! (n-1)



Prelude’s Boolean Type

So Haskell defines the Bool type in the Prelude as follows (Hutton p. 281):

data Bool = False | True

not :: Bool —-> Bool otherwise :: Bool
not True = False otherwise = True
not False = True

(&&) :: Bool -> Bool -> Bool

False && = False

True && b =D
(]]) :: Bool -> Bool -> Bool

False || b = Db

True || = True

So you can just use the Bool defined in Prelude from now on...



Functions Definitions Reading: Hutton Ch. 4

Now we will look at ways to extend BB Haskell to make it easier to use!

An important predefined function: Conditional expressions

Real Haskell Bare-Bones Haskell

(1f x then y else z) (cond x y 2z)

N/

Bool Must be same type because expressions can only return one type:

(1f 5 < 8 then 6 else 8) * 3 => 18

So, the type is: Bool -> a -> a -> a



Functions Definitions: Where Expressions

It is very common to need “helper functions” to define a function:

remDup :: List Integer -> List Integer

remDup Nil = Nil

remDup (Cons x Nil) = (Cons x Nil)

remDup (Cons x xs) = remDup’ x (reDup xs)

remDup’ :: List Integer -> List Integer

remDup’ x xs = 1f x == head xs then xs else (Cons x XS)

But why should remDup’ be visible anywhere but the definition of remDup?

What if you just want to call it £ or helper? Then you can’t use these names
anywhere again in this file!

Would be nice to have a “local definition” of the helper functions....



Functions Definitions: Where Expressions

Is is a good idea to indent your helper functions using the keyword where:

remDup :: List Integer -> List Integer
remDup Nil = Nil scope of
remDup (Cons x Nil) = (Cons x Nil) i where
remDup (Cons X Xs) = remDup’ x (reDup xs)
where remDup’ :: List Integer -> List Integer
remDup’ x xs = 1f x == head xs theén xs else (Cons x XS)

len x y = sgrt (sg x + sg y)

where sg a = a * a
doStuff :: Int -> String
doStuff x | x < 3 = report "less than three"
| otherwise = report "normal"

where report y = "the input is " ++ y



Haskell Types Reading: Hutton Ch. 4

Guarded Equations
Consider the following functions to find minimum and maximum of two Integers

min :: Integer -> Integer -> Integer
min x y = 1f x <= y then x else y

max :: Integer -> Integer -> Integer
max x y = 1f x >= y then x else y

This is a fairly common pattern, where we test some Boolean condition on the parameters.

In Haskell, this can be equivalently done using “Guarded Matching”: (Hutton p.280)
min :: Integer —-> Integer -> Integer

min x v | x <=y = X match succeeds only if guard true

min x y =y

max :: Integer —-> Integer -> Integer

max x y | x >= vy = x match succeeds only if guard true

| otherwise =y otherwise is always True



Haskell Types Reading: Hutton Ch. 4

There are usually many different ways of defining a function, and
no one way (helper functions, if-then-else, guards) is automatically better. These are
available if you want to use them...

Using where:
remDup :: List Integer -> List Integer
remDup Nil = Nil
remDup (Cons x Nil) = (Cons x Nil)
remDup (Cons x Xs) = remDup’ x (reDup xs)
where remDup’ :: List Integer -> List Integer
remDup’ x xs = 1f x == head xs then xs else (Cons x xs)

Or you can do it with an if-then-else in the main function:

remDup :: List Integer -> List Integer
remDup Nil = Nil

remDup (Cons x Nil) = (Cons x Nil)
remDup (Cons x (Cons y ys)) = 1if (x == vy)

then (remDup (Cons y ys))
else (Cons x (remDup (Cons vy ys))



Haskell Types Reading: Hutton Ch. 4

There are usually many different ways of defining a function, and
no one way (helper functions, if-then-else, guards) is automatically better. These are
available if you want to use them...

Or you can do it with an if-then-else in the main function:

remDup :: List Integer -> List Integer
remDup Nil = Nil

remDup (Cons x Nil) = (Cons x Nil)
remDup (Cons x (Cons y ys)) = 1if (x == vy)

then (remDup (Cons y ys))
else (Cons x (remDup (Cons vy ys))

Or you can do it with a guard:

remDup :: List Integer -> List Integer
remDup Nil = Nil
remDup (Cons x Nil) = (Cons x Nil)

remDup (Cons x (Cons y vys)) | x == vy = (remDup (Cons y vys))
remDup (Cons x (Cons y ys)) = (Cons x (remDup (Cons y vys)))



Polymorphic Types (Extra Practice!) daca 2ol = ratse | 1rue
data Nat = Zero | Succ Nat
data Pair a b = P a b
Such a process determines what type a function must have: data Triple abc =T ab c
g (Triple Bool a b) -> (Pair (Pair Nat a) b)
g (T True y z) = (P (P Zero y) z)
h (Pair a (Pair b Nat )) -> (Triple a b Bool)
h (P x (P y Zero)) = (T X y Bool)
comp x = (h (g x))
g ::(Triple Bool a b) -> (Pair (Pair Nat a) b X::C
(g x) (Pair (Pair Nat a) b)
c = (Triple Bool a b)
unify these two
f :: A -> B e :: A’
(f e) :: B’



Polymorphic Types (Extra Practice!) daca 2ol = ratse | 1rue

data Nat = Zero | Succ Nat
data Pair a b = P a b

Such a process determines what type a function must have: data Triple abc =T ab c
g :: (Triple Bool a b) -> (Pair (Pair Nat a) b)
g (T True y z) = (P (P Zero y) z)
h (Pair a (Pair b Nat )) -> (Triple a b Bool)
h (P x (P y Zero)) = (T X y Bool)

g ::(Triple Bool a b) -> (Pair (Pair Nat a) b X::C
(g x)::(Pair (Pair Nat a) b)
h ::(Pair a’ (Pair b’ Nat))->(Triple a’ b’ Bool)
(h (g x)) :: 27
Unify: (Pair a’ (Pair b’ Nat)) = (Palr Nat a)

a
(Pair (Pair Nat a) Db ) b = (Pair b’ Nat)



Polymorphic Types (Extra Practice!) daca 2ol = ratse | 1rue
data Nat = Zero | Succ Nat
data Pair a b = P a b
Such a process determines what type a function must have: data Triple abc =T ab c
g (Triple Bool a b) -> (Pair (Pair Nat a) b)
g (T True y z) = (P (P Zero y) z)
h (Pair a (Pair b Nat )) -> (Triple a b Bool)
h (P x (P y Zero)) = (T X y Bool)
comp x = (h (g x))
g ::(Triple Bool a b) -> (Pair (Pair Nat a) b X::C
(g x)::(Pair (Pair Nat a) b)
h ::(Pair a’ (Pair b’ Nat))->(Triple a’ b’ Bool)
(h (g x)) (Triple (Pair Nat a) b’ Bool)
a’ = (Pair Nat a)
b = (Pair b’ Nat)
c = (Triple Bool a b)
?°?

comp ::



Polymorphic Types (Extra Practice!) daca 2ol = ratse | 1rue
data Nat = Zero | Succ Nat
data Pair a b = P a b
Such a process determines what type a function must have: data Triple abc =T ab c
g : (Triple Bool a b) -> (Pair (Pair Nat a) b)
g (T True y z) = (P (P Zero y) z)
h : (Pair a (Pair b Nat )) -> (Triple a b Bool)
h (P x (P y Zero)) = (T X y Bool)
comp x = (h (g x))
g ::(Triple Bool a b) -> (Pair (Pair Nat a) b X::C
(g x)::(Pair (Pair Nat a) b)
h ::(Pair a’ (Pair b’ Nat))->(Triple a’ b’ Bool)

(h (g x)) (Triple

comp :: (Triple Bool a (Pair b’ Nat))

(Pair Nat a)

a’ =
b =
C =

b’ Bool)

(Pair Nat a)
(Pair b’ Nat)
(Triple Bool a b)

-> (Triple (Pair Nat a) b’ Bool)



