CS 320: Concepts of Programming Languages

Wayne Snyder Computer Science Department Boston University

Lecture 04: Basic Haskell Continued

- Polymorphic Types
- Type Inference with Polymorphism
- Standard Types: Bools, Integers

• Function definitions in more detail: if-then-else, guards, where

Reading: Hutton Chapter 3, 4.1 – 4.4

Reading: Hutton Ch. 3.7

Recall: Many functions (and data types) do not need to know everything about the types of the arguments and results.

Many data types and most list-processing functions are of this kind:

data List a = Nil | Cons a (List a) data Pair a b = P a bdata Triple a b c = T a b cappend :: List a -> List a -> List a reverse :: List a -> List a **Check:** What is the type of head (Cons x) = xP ? head ? tail (Cons x xs) = xstail ?

Reading: Hutton Ch. 3.7

Recall: Many functions (and data types) do not need to know everything about the types of the arguments and results.

Many data types and most list-processing functions are of this kind:

data List a = Nil | Cons a (List a) data Pair a b = P a bdata Triple a b c = T a b cappend :: List a -> List a -> List a reverse :: List a -> List a Check: What is the type of P :: a -> b -> Pair a b head (Cons x) = xhead :: List a -> a tail (Cons x xs) = xstail :: List a -> List a

Reading: Hutton Ch. 3.7

Polymorphic type inference, based on unifying type expressions, determines the types of all expressions by looking at all the places where types must be the same:

```
pred :: Nat -> Nat
```

-- return the first n elements of a list

- Same variable in a rule must be same type.
- Arguments each each position and result types must be the same.
- Inputs to function and type of arguments must be same.

Type of function must be: take :: Nat -> List a -> List a

Reading: Hutton Ch. 3.7

Polymorphic type inference, based on unifying type expressions, determines the types of all expressions by looking at all the places where types must be the same:

```
pred :: Nat -> Nat
```

```
-- return the first n elements of a list
```

take ::	Nat ->	List a	-> List a
take	Zero	XS	= XS
take	n	Nil	= Nil
take	n	(Cons x xs)	= Cons x (take (pred n) xs)

But ALL expressions must have appropriate types, using rule:

Reading: Hutton Ch. 3.7

Polymorphic type inference determines the most general type that a function can have. This involves accounting for all the type constraints implied when you examine two type expressions that must apply to a single context (say an argument to a function):

```
data Bool = False | True
data Nat = Zero | Succ Nat
data Triple a b c = T a b c -- ex: (Zero, Zero, True)
T :: a -> b -> c -> Triple a b c
```

Example 1:

```
Let s = (T Zero x y) -- x, y, z, w can have any types
Let t = (T z False w)
```

If s and t have to have the same type, what would that type be?

```
(Triple Nat Bool a)
```

and furthermore, we must have z :: Nat, x :: Bool but y, w can be anything as long as they are the same type a !

Reading: Hutton Ch. 3.7

data Bool = False | True
data Nat = Zero | Succ Nat
data Triple a b c = T a b c -- ex: (A,C,B)

Example 2:

Let s = (T True x False) -- x, y, z, w have unknown types Let t = (T z False x)

If s and t have to have the same type, what would that type be?

For swe have (Triple Bool a Bool) For twe have (Triple b Bool c)

For the types to be the same we would have to have a = b = c = Bool:

```
(Triple Bool Bool Bool)
```

This process is like "two-sided matching" and is called Unification:

(Triple Bool b Bool)) → (Triple Bool Bool Bool) ← (Triple a Bool c)

Reading: Hutton Ch. 3.7

data Bool = False | True data Nat = Zero | Succ Nat data Pair a b = P a b -- ex: (A,B) data Triple a b c = T a b c -- ex: (A,C,B)

Example 3:

Let s = (T True x x) -- x, y can have any types Let t = (T y False Zero)

If s and t have to have the same type, what would the type of T be?

Answer: No type exists, as x would have to simultaneously be Bool and Nat, so it is contradictory and is a type error! The type expressions

```
(Triple Bool a a) and (Triple b Bool Nat) can NOT be unified!
```

Example:

f :: (Pair a b) -> (Triple a b b)
f (P x y) = (T x y y)
k :: (Pair Bool a) -> (Pair a Bool)
k (P x y) = (P y x)
$$data Triple a b c = T a$$

$$\underbrace{f :: A \rightarrow B}_{f :: A \rightarrow B} e :: A'$$

$$f :: A \rightarrow B$$

$$e :: A'$$

$$(f e) :: B'$$

k :: (Pair Bool a) -> (Pair a Bool) x :: c

(k x) :: (Pair a Bool)

c = (Pair Bool a)

Reading: Hutton Ch. 3.7

data Bool = False | True
data Nat = Zero | Succ Nat
data Pair a b = P a b
data Triple a b c = T a b c

Unification determines what type a function must have:

data Pair a b = P a bdata Triple a b c = T a b c $f :: (Pair a b) \rightarrow (Triple a b b)$ f (P x y) = (T x y y)unify these two k :: (Pair Bool a) -> (Pair a Bool) f :: A -> B e :: A' $k \quad (P \quad x \quad y) = (P \quad y \quad x)$ (f e) :: B' test x = (f (k x))k :: (Pair Bool a) -> (Pair a Bool) x :: c (k x) :: (Pair a Bool) f :: (Pair a' b') \rightarrow (Triple a' b' b') (f (k x)) :: ?? Note: names Unify: (Pair a' b') can include prime marks: (Pair a Bool) a a' a'' c = (Pair Bool a) a = a' b' = Bool

Reading: Hutton Ch. 3.7

data Bool = False | True

data Nat = Zero | Succ Nat

Unification determines what type a function must have:

 $f :: (Pair a b) \rightarrow (Triple a b b)$

Reading: Hutton Ch. 3.7

```
data Bool = False | True
data Nat = Zero | Succ Nat
data Pair a b = P a b
data Triple a b c = T a b c
```


c = (Pair Bool a) a = a' b' = Bool

test :: ??

Unification determines what type a function must have:

Reading: Hutton Ch. 3.7

```
data Bool = False | True
data Nat = Zero | Succ Nat
data Pair a b = P a b
data Triple a b c = T a b c
```


Adding Numbers to Bare Bones Haskell: Built-in Numeric Types

Int -- fixed-precision integers Integer -- arbitrary-precision integers Float -- 32-bit floating-point Double -- 64-bit float-point Rational

Operators +, -, *, == are the same in Haskell as in Python, Java, &&C except:

exponentiation:	x^ 3		(only f	(only for integer exponents)				
	x** 3	.1415	(only :	for flo	oating-point exponents)			
unary minus:	(-9)		(must	: use j	parentheses)			
not equals:	/=							
Integer division:	(div	10 7)	=> 1					
Floating-point d	livision	(3.4	/ 4.9)	=>	0.693877551020408			
modulus:	(mod	10 7)	=> 3					

We'll explore types in detail next week..... for now we will only use Integers.

Built-in Numeric Types: Infix vs Prefix Functions

We have been using prefix notation up to this point and two of the new functions we have for Integers are given in this form:

Integer division: (div 10 7) => 1
modulus: (mod 10 7) => 3

But most (binary) arithmetic operators are infix:

(4 * 3) => 12

(2 - 3) => (-1)

There are also postfix (unary) functions in mathematics:

5! => 120

as well as mixfix for functions of more than 2 arguments:

(3 < 4 ? 2 : 5) => 2(if 6 < 4 then 2 else 5) => 5

The term **operator** generally refers to a function which is used with infix notation: **+ *** ^ etc. We'll just call them **functions**.

Remember: => means "evaluates to"

Built-in Numeric Types: Infix vs Prefix Functions

Haskell is completely flexible about prefix and infix notation for binary (two argument) functions:

To use a function defined in **prefix form as infix** surround it by **backquotes**:

(div	10	7)	=>	1	(10	`div`	7)	=>	1
(mod	10	7)	=>	3	(10	`mod`	7)	=>	3

To use a function defined in **infix form as prefix** surround it by **parentheses**:

 $(10 + 7) \implies 17$ $((+) 10 7) \implies 17$ $(10^{3}) \implies 1000$ $((^{)} 10 3) \implies 1000$

To define an **infix** function it must consist of special symbols (no letters) and the type declaration must use prefix (with parentheses):

(!!) :: List a -> Integer -> a -- select the nth element
(!!) (Cons x _) 0 = x
(!!) (Cons x xs) n = xs !! (n-1)

Prelude's Boolean Type

So Haskell defines the Bool type in the Prelude as follows (Hutton p. 281):

```
data Bool = False | True
```

```
not :: Bool -> Bool otherwise :: Bool
```

otherwise = True

not True = False

not False = True

```
(&&) :: Bool \rightarrow Bool \rightarrow Bool
False && _ = False
True && b = b
```

```
(||) :: Bool -> Bool -> Bool
False || b = b
True || = True
```

So you can just use the Bool defined in Prelude from now on...

Functions Definitions

Reading: Hutton Ch. 4

Now we will look at ways to extend BB Haskell to make it easier to use!

An important predefined function: Conditional expressions

Functions Definitions: Where Expressions

It is very common to need "helper functions" to define a function:

```
remDup :: List Integer -> List Integer
remDup Nil = Nil
remDup (Cons x Nil) = (Cons x Nil)
remDup (Cons x xs) = remDup' x (reDup xs)
```

```
remDup' :: List Integer -> List Integer
remDup' x xs = if x == head xs then xs else (Cons x xs)
```

But why should remDup' be visible anywhere but the definition of remDup?

What if you just want to call it f or helper? Then you can't use these names anywhere again in this file!

Would be nice to have a "local definition" of the helper functions....

Functions Definitions: Where Expressions

Is is a good idea to indent your helper functions using the keyword where:

```
remDup :: List Integer -> List Integer
remDup Nil = Nil scope of
remDup (Cons x Nil) = (Cons x Nil) where
remDup (Cons x xs) = remDup' x (reDup xs)
where remDup' :: List Integer -> List Integer
remDup' x xs = if x == head xs then xs else (Cons x xs)
```

```
len x y = sqrt (sq x + sq y)

where sq a = a * a
```

Reading: Hutton Ch. 4

Haskell Types

Guarded Equations

Consider the following functions to find minimum and maximum of two Integers

min :: Integer \rightarrow Integer \rightarrow Integer min x y = if x <= y then x else y

```
max :: Integer \rightarrow Integer \rightarrow Integer
max x y = if x >= y then x else y
```

This is a fairly common pattern, where we test some Boolean condition on the parameters. In Haskell, this can be equivalently done using "Guarded Matching": (Hutton p.280)

Haskell Types

Reading: Hutton Ch. 4

There are usually many different ways of defining a function, and no one way (helper functions, if-then-else, guards) is automatically better. These are available if you want to use them...

Using where:

```
remDup :: List Integer -> List Integer
remDup Nil = Nil
remDup (Cons x Nil) = (Cons x Nil)
remDup (Cons x xs) = remDup' x (reDup xs)
where remDup' :: List Integer -> List Integer
remDup' x xs = if x == head xs then xs else (Cons x xs)
```

Or you can do it with an if-then-else in the main function:

```
remDup :: List Integer -> List Integer
remDup Nil = Nil
remDup (Cons x Nil) = (Cons x Nil)
remDup (Cons x (Cons y ys)) = if (x == y)
then (remDup (Cons y ys))
else (Cons x (remDup (Cons y ys))
```

Haskell Types

Reading: Hutton Ch. 4

There are usually many different ways of defining a function, and no one way (helper functions, if-then-else, guards) is automatically better. These are available if you want to use them...

Or you can do it with an if-then-else in the main function:

```
remDup :: List Integer -> List Integer
remDup Nil = Nil
remDup (Cons x Nil) = (Cons x Nil)
remDup (Cons x (Cons y ys)) = if (x == y)
then (remDup (Cons y ys))
else (Cons x (remDup (Cons y ys))
```

Or you can do it with a guard:

remDup :: List Integer -> List Integer remDup Nil = Nil remDup (Cons x Nil) = (Cons x Nil) remDup (Cons x (Cons y ys)) | x == y = (remDup (Cons y ys)) remDup (Cons x (Cons y ys)) = (Cons x (remDup (Cons y ys)))

Polymorphic Types (Extra Practice!) Such a process determines what type a function must have:							Bool = False Nat = Zero S	True Succ Nat
							Pair a b = P Triple a b c	аb = Тарс
g ::	(Triple (T	Bool a b) - True y z) =	-> (Pair = (P	(Pair (P	Nat Zero	a) y)	b) z)	
h :: h	(Pair a (P x	(Pair b Nat (P y Zei	z)) -> (' co)) = ('	Triple T	ab xy]	3001 3001	_) _)	
comp	x = (h	(g x))						
		g ::(Triple	Bool a b)	-> (Pai	ir (Pa	air :	Nat a) b	x::c
h ::(Pair a'(Pa	ir b' Nat))->((h (g x))	Triple a' b'	' Bool)	(g	x)::	(Pair (Pair Na	t a) b)
Unify:	(Pair (Pair	a ' (Pair Nat a)	(Pair b' N b	(at)))	a b	′ = =	(Pair Nat a (Pair b' Na ⁻) t)

Polymorphic Types (Extra Practice!)data Bool = False | True
data Nat = Zero | Succ Nat
data Pair a b = P a b
data Triple a b c = T a b cSuch a process determines what type a function must have:
$$data Pair a b = P a b$$

data Triple a b c = T a b cg :: (Triple Bool a b) -> (Pair (Pair Nat a) b)
g (T True y z) = (P (P Zero y) z)
h :: (Pair a (Pair b Nat)) -> (Triple a b Bool)
h (P x (P y Zero)) = (T x y Bool)comp x = (h (g x)) $\underline{g :: (Triple Bool a b) -> (Pair (Pair Nat a) b x:: c(g x):: (Pair (Pair Nat a) b)discrete (Pair a' (Pair b' Nat))->(Triple a' b' Bool)h :: (Pair a' (Pair b' Nat))->(Triple a' b' Bool)a' = (Pair Nat a)b = (Pair b' Nat)c = (Triple Bool a b)$

comp ::(Triple Bool a (Pair b' Nat)) -> (Triple (Pair Nat a) b' Bool)