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Lecture 04:  Basic Haskell Continued
o Polymorphic Types
o Type Inference with Polymorphism
o Standard Types: Bools,  Integers
o Function definitions in more detail:

if-then-else, guards, where

Reading: Hutton Chapter 3,  4.1 – 4.4



Polymorphic Types
Recall:  Many functions (and data types) do not need to know everything 
about the types of the arguments and results.

Many data types  and most list-processing functions are of this kind:

data List a = Nil | Cons a (List a)
data Pair a b = P a b
data Triple a b c = T a b c

append :: List a -> List a -> List a       

reverse :: List a -> List a

head (Cons x _ ) = x

tail (Cons x xs) = xs

Reading: Hutton Ch. 3.7

Check: What is the type of

P ?

head ?

tail ?



Polymorphic Types
Recall:  Many functions (and data types) do not need to know everything 
about the types of the arguments and results.

Many data types  and most list-processing functions are of this kind:

data List a = Nil | Cons a (List a)
data Pair a b = P a b
data Triple a b c = T a b c

append :: List a -> List a -> List a       

reverse :: List a -> List a

head (Cons x _ ) = x

tail (Cons x xs) = xs

Reading: Hutton Ch. 3.7

Check: What is the type of

P :: a -> b -> Pair a b

head :: List a -> a

tail :: List a -> List a 



Polymorphic Types
Polymorphic type inference, based on unifying type expressions, determines the 
types of all expressions by looking at all the places where types must be the same:

pred :: Nat -> Nat 

-- return the first n elements of a list

take    Zero   xs         = xs
take    n      Nil        = Nil
take    n     (Cons x xs) = Cons x (take (pred n) xs)

o Same variable in a rule must be same type. 
o Arguments each each position and result types must be the same.
o Inputs to function and type of arguments must be same.  

Type of function must be:
take :: Nat  -> List a     ->    List a

Reading: Hutton Ch. 3.7



Polymorphic Types
Polymorphic type inference, based on unifying type expressions, determines the 
types of all expressions by looking at all the places where types must be the same:

pred :: Nat -> Nat 

-- return the first n elements of a list

take :: Nat -> List a     -> List a
take    Zero   xs         = xs
take    n      Nil        = Nil
take    n     (Cons x xs) = Cons x (take (pred n) xs)

But ALL expressions must have appropriate types, using rule:

Reading: Hutton Ch. 3.7



Polymorphic Types
Polymorphic type inference determines the most general type that a function can have.  This 
involves accounting for all the type constraints implied when you examine two type 
expressions that must apply to a single context (say an argument to a function):

data Bool = False | True
data Nat = Zero | Succ Nat
data Triple a b c = T a b c      -- ex: (Zero,Zero,True)

T :: a -> b -> c -> Triple a b c

Example 1:

Let s = (T Zero x     y)    -- x,y,z,w can have any types
Let t = (T z    False w) 

If s and t have to have the same type, what would that type be?

(Triple Nat Bool a)

and furthermore, we must have  z :: Nat, x :: Bool  but y,w can be anything
as long as they are the same type a !

Reading: Hutton Ch. 3.7



Polymorphic Types
data Bool = False | True
data Nat = Zero | Succ Nat
data Triple a b c = T a b c      -- ex: (A,C,B)

Example 2:

Let s = (T True x     False)    -- x,y,z,w have unknown types
Let t = (T z    False x    )

If s and t have to have the same type, what would that type be?

For s we have (Triple Bool a    Bool)
For t we have (Triple b    Bool c   )

For the types to be the same we would have to have a = b = c = Bool:

(Triple Bool Bool Bool)

This process is like “two-sided matching” and is called Unification:

(Triple Bool b Bool))    (Triple Bool Bool Bool)     (Triple a Bool c)

Reading: Hutton Ch. 3.7



Polymorphic Types
data Bool = False | True
data Nat = Zero | Succ Nat
data Pair a b = P a b            -- ex: (A,B)
data Triple a b c = T a b c      -- ex: (A,C,B)

Example 3:

Let s = (T True x     x    )    -- x,y can have any types
Let t = (T y    False Zero )

If s and t have to have the same type, what would the type of T be?

Answer:  No type exists, as x would have to simultaneously be Bool and Nat, so it is 
contradictory and is a type error!  The type expressions

(Triple Bool a a)  and (Triple b Bool Nat)

can NOT be unified!

Reading: Hutton Ch. 3.7



Polymorphic Types
Example:

f :: (Pair a b) -> (Triple a b b)
f    (P x y) =  (T x y y)

k :: (Pair Bool a) -> (Pair a Bool)
k    (P x    y)  = (P y x   )

test x = (f (k x))

k :: (Pair Bool a) -> (Pair a Bool)      x :: c

(k x) :: (Pair a Bool)

c = (Pair Bool a)

Reading: Hutton Ch. 3.7
data Bool = False | True
data Nat = Zero | Succ Nat
data Pair a b = P a b            
data Triple a b c = T a b c

unify these two



Polymorphic Types
Unification determines what type a function must have:

f :: (Pair a b) -> (Triple a b b)
f    (P    x y) =  (T      x y y)

k :: (Pair Bool a) -> (Pair a Bool)
k    (P    x    y) =  (P    y x   )

test x = (f (k x))

k :: (Pair Bool a) -> (Pair a Bool)       x :: c

(k x) ::  (Pair a Bool)
f :: (Pair a’ b’) -> (Triple a’ b’ b’)

(f (k x)) :: ??
Unify:  (Pair a’ b’  )

(Pair a  Bool)

c =  (Pair Bool a)    a = a’     b’ = Bool 

Reading: Hutton Ch. 3.7
data Bool = False | True
data Nat = Zero | Succ Nat
data Pair a b = P a b            
data Triple a b c = T a b c

unify these two

Note: names 
can include 
prime marks:

a  a’  a’’



Polymorphic Types
Unification determines what type a function must have:

f :: (Pair a b) -> (Triple a b b)
f    (P    x y) =  (T      x y y)

k :: (Pair Bool a) -> (Pair a Bool)
k    (P    x    y)  = (P    y x   )

test x = (f (k x))

k :: (Pair Bool a) -> (Pair a Bool)        x :: c

(k x) :: (Pair a Bool)
f :: (Pair a’ b’) -> (Triple a’ b’ b’)

(f (k x)) ::  (Triple a’ Bool Bool)     

c = (Pair Bool a)    a = a’     b’ = Bool 

test :: ??

Reading: Hutton Ch. 3.7
data Bool = False | True
data Nat = Zero | Succ Nat
data Pair a b = P a b            
data Triple a b c = T a b c

unify these two



Polymorphic Types
Unification determines what type a function must have:

f :: (Pair a b) -> (Triple a b b)
f    (P    x y) =  (T      x y y)

k :: (Pair Bool a) -> (Pair a Bool)
k    (P    x    y)  = (P    y x   )

test x = (f (k x))

k :: (Pair Bool a) -> (Pair a Bool)        x :: c

(k x) :: (Pair a Bool)
f :: (Pair a’ b’) -> (Triple a’ b’ b’)

(f (k x)) ::  (Triple a’ Bool Bool)     

c = (Pair Bool a)    a = a’     b’ = Bool 

test :: P Bool a’ -> T a’ Bool Bool

Reading: Hutton Ch. 3.7
data Bool = False | True
data Nat = Zero | Succ Nat
data Pair a b = P a b            
data Triple a b c = T a b c

unify these two

Another example at end of 
the slides.....



Adding Numbers to Bare Bones Haskell: 
Built-in Numeric Types
Int  -- fixed-precision integers
Integer – arbitrary-precision integers
Float – 32-bit floating-point
Double – 64-bit float-point
Rational 

Operators +, -, *, == are the same in Haskell as in Python,  Java,  &&C  except:

exponentiation:   x^3         (only for integer exponents)
x**3.1415   (only for floating-point exponents)

unary minus:      (-9)         (must use parentheses)
not equals:          /=
Integer division:  (div 10 7) => 1
Floating-point division ( 3.4 / 4.9) => 0.693877551020408
modulus:            (mod 10 7)  => 3

We’ll explore types in detail next week..... for now we will only use Integers. 



Built-in Numeric Types: Infix vs Prefix Functions
We have been using prefix notation up to this point  and two of the new functions we have 
for Integers are given in this form:

Integer division:  (div 10 7) => 1
modulus:            (mod 10 7)  => 3

But most (binary) arithmetic operators are infix:
(4 * 3)  =>  12

(2 – 3)  => (-1)

There are also postfix (unary) functions in mathematics:
5! => 120

as well as mixfix for functions of more than 2 arguments:
( 3 < 4 ? 2 : 5 ) => 2

(if 6 < 4 then 2 else 5) => 5

Remember:
=> means “evaluates to”

The term operator generally refers 
to a function which is used with 
infix notation:  + * ^ etc.
We’ll just call them functions. 



Built-in Numeric Types: Infix vs Prefix Functions
Haskell is completely flexible about prefix and infix notation for binary (two argument)
functions:
To use a function defined in prefix form as infix surround it by backquotes:
(div 10 7) => 1              (10 `div` 7) => 1
(mod 10 7) => 3              (10 `mod` 7) => 3

To use a function defined in infix form as prefix surround it by parentheses:
(10 + 7) => 17              ((+) 10 7) => 17
(10 ^ 3) => 1000            ((^) 10 3) => 1000

To define an infix function  it must consist of special symbols (no letters) and the type 
declaration must use prefix (with parentheses):
(!!) :: List a -> Integer -> a   -- select the nth element
(!!) (Cons x _ ) 0 = x
(!!) (Cons x xs) n = xs !! (n-1) 



Prelude’s Boolean Type
So Haskell defines the Bool type in the Prelude as follows (Hutton p. 281):

data Bool = False | True

not :: Bool -> Bool                       otherwise :: Bool

not True = False                          otherwise = True

not False = True

(&&) :: Bool -> Bool -> Bool
False && _ = False

True  && b = b

(||) :: Bool -> Bool -> Bool

False || b = b
True  || _ = True

So you can just use the Bool defined in Prelude from now on...



Functions Definitions
Now we will look at ways to extend BB Haskell to make it easier to use!

An important predefined function:  Conditional expressions

Real Haskell                                                     Bare-Bones Haskell

(if x then y else z)             (cond x y z)

Bool    Must be same type because expressions can only return one type:

(if 5 < 8  then  6  else  8) * 3      =>   18

So, the type is:   Bool -> a -> a -> a

Reading: Hutton Ch. 4



Functions Definitions: Where Expressions
It is very common to need “helper functions” to define a function:

remDup :: List Integer -> List Integer
remDup  Nil         = Nil            
remDup (Cons x Nil) = (Cons x Nil)
remDup (Cons x xs)  = remDup’ x (reDup xs)

remDup’ :: List Integer -> List Integer
remDup’ x xs = if x == head xs then xs else (Cons x xs)                        

But why should remDup’ be visible anywhere but the definition of remDup?

What if you just want to call it f or helper?   Then you can’t use these names 
anywhere again in this file!  

Would be nice to have a “local definition” of the helper functions....            



Functions Definitions: Where Expressions
Is is a good idea to indent your helper functions using the keyword where:
remDup :: List Integer -> List Integer
remDup  Nil         = Nil            
remDup (Cons x Nil) = (Cons x Nil)
remDup (Cons x xs)  = remDup’ x (reDup xs)

where remDup’ :: List Integer -> List Integer
remDup’ x xs = if x == head xs then xs else (Cons x xs)                        

len x y = sqrt (sq x + sq y) 
where sq a = a * a

doStuff :: Int -> String 
doStuff x  | x < 3 = report "less than three" 

| otherwise = report "normal" 
where report y = "the input is " ++ y

scope of 
where



Haskell Types
Guarded Equations

Consider the following functions to find minimum and maximum of two Integers

min :: Integer -> Integer -> Integer
min x y = if x <= y then x else y

max :: Integer -> Integer -> Integer
max x y = if x >= y then x else y

This is a fairly common pattern, where we test some Boolean condition on the parameters.  
In Haskell, this can be equivalently done using “Guarded Matching”:           (Hutton p.280)

min :: Integer –> Integer -> Integer
min x y | x <= y   = x   match succeeds only if guard true
min x y            = y

max :: Integer –> Integer -> Integer
max x y | x >= y    = x        match succeeds only if guard true

| otherwise = y        otherwise is always True

Reading: Hutton Ch. 4



Haskell Types
There are usually many different ways of defining a function, and
no one way (helper functions, if-then-else, guards) is automatically better. These are 
available if you want to use them...
Using where:
remDup :: List Integer -> List Integer
remDup  Nil         = Nil            
remDup (Cons x Nil) = (Cons x Nil)
remDup (Cons x xs)  = remDup’ x (reDup xs)

where remDup’ :: List Integer -> List Integer
remDup’ x xs = if x == head xs then xs else (Cons x xs)                        

Or you can do it with an if-then-else in the main function:
remDup :: List Integer -> List Integer
remDup  Nil                 = Nil            
remDup (Cons x Nil)         = (Cons x Nil)
remDup (Cons x (Cons y ys)) = if (x == y) 

then (remDup (Cons y ys)) 
else (Cons x (remDup (Cons y ys))

Reading: Hutton Ch. 4



Haskell Types
There are usually many different ways of defining a function, and
no one way (helper functions, if-then-else, guards) is automatically better. These are 
available if you want to use them...

Or you can do it with an if-then-else in the main function:
remDup :: List Integer -> List Integer
remDup  Nil                 = Nil            
remDup (Cons x Nil)         = (Cons x Nil)
remDup (Cons x (Cons y ys)) = if (x == y) 

then (remDup (Cons y ys)) 
else (Cons x (remDup (Cons y ys))

Or you can do it with a guard:

remDup :: List Integer -> List Integer
remDup  Nil                          = Nil            
remDup (Cons x Nil)                  = (Cons x Nil)
remDup (Cons x (Cons y ys)) | x == y = (remDup (Cons y ys))
remDup (Cons x (Cons y ys)) = (Cons x (remDup (Cons y ys)))

Reading: Hutton Ch. 4



Polymorphic Types (Extra Practice!)
Such a process determines what type a function must have:

g :: (Triple Bool a b) -> (Pair  (Pair Nat  a) b)
g    (T      True y z) =  (P     (P    Zero y) z)

h :: (Pair a (Pair b Nat )) -> (Triple a b Bool)
h    (P    x (P    y Zero)) =  (T      x y Bool)

comp x = (h (g x))

g ::(Triple Bool a b) -> (Pair (Pair Nat a) b      x::c

(g x) :: (Pair (Pair Nat a) b)

data Bool = False | True
data Nat = Zero | Succ Nat
data Pair a b = P a b            
data Triple a b c = T a b c

c =  (Triple Bool a b)
unify these two



Polymorphic Types (Extra Practice!)
Such a process determines what type a function must have:

g :: (Triple Bool a b) -> (Pair  (Pair Nat  a) b)
g    (T      True y z) =  (P     (P    Zero y) z)

h :: (Pair a (Pair b Nat )) -> (Triple a b Bool)
h    (P    x (P    y Zero)) =  (T      x y Bool)

comp x = (h (g x))

g ::(Triple Bool a b) -> (Pair (Pair Nat a) b      x::c

(g x)::(Pair (Pair Nat a) b)
h ::(Pair a’(Pair b’ Nat))->(Triple a’ b’ Bool)                                                  

(h (g x)) :: ??

Unify:     (Pair  a’          (Pair b’ Nat))       a’ =  (Pair Nat a)
(Pair  (Pair Nat a) b           )       b  =  (Pair b’ Nat) 

data Bool = False | True
data Nat = Zero | Succ Nat
data Pair a b = P a b            
data Triple a b c = T a b c



Polymorphic Types (Extra Practice!)
Such a process determines what type a function must have:

g :: (Triple Bool a b) -> (Pair  (Pair Nat  a) b)
g    (T      True y z) =  (P     (P    Zero y) z)
h :: (Pair a (Pair b Nat )) -> (Triple a b Bool)
h    (P    x (P    y Zero)) =  (T      x y Bool)

comp x = (h (g x))

g ::(Triple Bool a b) -> (Pair (Pair Nat a) b      x::c

(g x)::(Pair (Pair Nat a) b)
h ::(Pair a’(Pair b’ Nat))->(Triple a’ b’ Bool)                                                  

(h (g x)) :: (Triple  (Pair Nat a) b’ Bool)

a’ = (Pair Nat a)
b  = (Pair b’ Nat)
c  = (Triple Bool a b) 

comp :: ??

data Bool = False | True
data Nat = Zero | Succ Nat
data Pair a b = P a b            
data Triple a b c = T a b c



Polymorphic Types (Extra Practice!)
Such a process determines what type a function must have:

g :: (Triple Bool a b) -> (Pair  (Pair Nat  a) b)
g    (T      True y z) =  (P     (P    Zero y) z)
h :: (Pair a (Pair b Nat )) -> (Triple a b Bool)
h    (P    x (P    y Zero)) =  (T      x y Bool)

comp x = (h (g x))

g ::(Triple Bool a b) -> (Pair (Pair Nat a) b      x::c

(g x)::(Pair (Pair Nat a) b)
h ::(Pair a’(Pair b’ Nat))->(Triple a’ b’ Bool)                                                  

(h (g x)) :: (Triple  (Pair Nat a) b’ Bool)

a’ = (Pair Nat a)
b  = (Pair b’ Nat)
c  = (Triple Bool a b) 

comp ::(Triple Bool a (Pair b’ Nat)) -> (Triple (Pair Nat a) b’ Bool)

data Bool = False | True
data Nat = Zero | Succ Nat
data Pair a b = P a b            
data Triple a b c = T a b c


